Six eggs per day for six days: cholesterol?

In What about cholesterol we saw how important cholesterol is for so many essential bodily functions and in so many important ways, that there should never have been a shadow of a doubt in anyone’s mind that cholesterol is anything but essential and vital to our health and our life. And that, therefore, it is ridiculous to even have to say that cholesterol is good for us. However, it is more than completely absurd, non-sensical, and outright dangerous to claim that it is bad for us. Let me assume you are now well convinced of this.

There is something we didn’t go into that relates to the fact that we’ve been told—and continue to be told—that we should minimise our intake of dietary cholesterol. The crazy thing about that recommendation is that the amount needed by the body of this vital substance depends solely on the body’s needs for it. And thus, the normally functioning liver, supplied with adequate amounts of the essential building blocks, produces cholesterol in the amount that is necessary for proper bodily function—whatever that amount happens to be at a particular time. What this means is that in a healthy individual, the amount of cholesterol you eat should not really affect the amount of cholesterol in the blood, estimated by the concentration of the lipoproteins that transport it to and from tissues.

Even though this obvious consequence of considering the body’s physiological function should just be accepted as a plain fact, unfortunately, most people—including health professionals—don’t. We continue to believe that cholesterol is bad, and we continue to try to minimise dietary cholesterol in order to lower lipoprotein concentrations, completely ignoring the fact that cholesterol and lipoprotein production is an exceedingly refined and well regulated mechanism that responds directly to the body’s needs.

It is certainly possible that if dietary cholesterol intake decreases, the liver produces more, and if dietary cholesterol intake increases, then the liver produces less; to what extent certainly depends on the physiological circumstances, and specific needs for cholesterol depend on many factors, all related to the state of the body. But it is pretty well established that the body produces more or less the same amount of cholesterol regardless of the dietary cholesterol intake because it much prefers to use the kind of cholesterol the liver produces, which is free or un-esterified cholesterol, rather than having to de-esterify the dietary cholesterol that comes primarily as cholesterol ester. Therefore, much of the dietary cholesterol is used in bile and excreted through the intestines.

For a lot more details, you can check out Peter Attia’s essential points to remember on his series The straight dope on cholesterol, even if I don’t really agree with the points linking LDL with atherosclerosis, simply because lipoprotein concentration, particle number, size distribution and everything else are all secondary or even further removed consequences of other dietary and metabolic factors upstream. In fact, I believe we should not even have started measuring lipoprotein concentrations and cholesterol in the first place. What we should have always focused on are uric acid levels and tracers of inflammation. And on another note, Peter is categorical that dietary cholesterol is not absorbed and all excreted. However, a couple of review papers I read about lipid absorption state that about 50% of intestinal cholesterol is, in fact, absorbed. The truth is that it is almost certainly dependent on a whole slew of factors and that, as for all things, the body absorbs and excretes in accord with its needs.

A viral infection, for example, will generally lead to the increase of lipoprotein concentration because these are the molecules that can most effectively gobble up and destroy viruses. Dehydration leads to a scarcity of water at the cellular level. As a consequence, each cell’s survival relies on producing more cholesterol in order to more effectively seal in the precious water it depends on for life that appears to be so scarce. Hence, dehydration also leads to higher cholesterol. A diet high in sugar—simple and starchy carbohydrates—naturally leads to a much greater amount of damage to cells and tissues throughout the body, but especially to the blood vessels themselves, from the highly damaging presence of insulin, the result of glycation of proteins and fats by higher concentrations of circulating glucose, and several other related factors. To repair the damaged cells, cholesterol is needed, and thus, in this case also, lipoprotein concentrations rise accordingly.

Although the fact that the amount of dietary cholesterol does not affect blood lipoprotein concentrations much is not debated by people in-the-know about issues pertaining to cholesterol, I just wanted to see this for myself what would happen. So, I devised a simple self-experiment: compare the lipoprotein concentrations in my blood when following my low-card, high-fat, high-nutrient diet, to those after eating 6 eggs per day for 6 days in a rowwhere I basically just added to my diet more eggs, usually raw in smoothies. That’s a lot of eggs… But before I present the results, I think it’s important to go through a few numbers relevant to this discussion.

lotsofeggs

Eggs: An average organic egg of 50 g supplies 70 calories, and contains 5 g of fat (all in the yolk), 6 g of protein (all in the egg white), less than 0.5 g of carbohydrates and 215 mg of cholesterol. This means that 6 eggs supply a total of 1300 mg of cholesterol. For me, 6 eggs per day is 3 times my usual consumption of 2 eggs per day on average—a 300% increase.

Blood volume: The blood in our body accounts for about 7% of its mass (Ref). For a weight of 100 kg, there is 7 kg of blood (about 7 litres); if you weight 50 kg, then there is 3.5 kg of blood or about 3.5 litres. And therefore, for a 57-58 kg person like me, this makes almost exactly 4 kg, and thus about 4 litres or 40 decilitres.

Lipoproteins: Cholesterol is not water-soluble, and thus has to be transported by lipoproteins. Different lipoproteins carry a different amount of cholesterol. The bulk of it, however, is found in LDL and HDL molecules. The percentage of cholesterol by weight in LDL is about 40%, and in HDL it is between 20 and 35% (Ref). To keep our calculation simple, we’ll take this to mean that LDL is half cholesterol by weight, and HDL is one quarter cholesterol.

Here are the results of the blood tests from December 16 and 22, 2011, both taken in the late afternoon after nearly 24 hours of fasting (I do this every week, so it was nothing unusual). And please don’t worry about the boldface: it appears automatically if the numbers are not in the “recommended” range, which for cholesterol is below 200 and for glucose 65-110 mg/dL. And don’t worry about the spelling: it’s spanish because I live in Spain.

Now, looking at the results, can you guess which one is which: which is the result of the blood test before one week of 6 eggs per day, and which one is after?

The answer is that the first table is from the blood test done on Dec 16, and the second table is from the blood test done on Dec 22:

After one week of eating 6 eggs per day, the LDL decreased from 110 to 95 mg/dL, the HDL increased from 106 to 112 mg/dL, the “total cholesterol” decreased from 224 to 213, and the triglycerides decreased from 41 to 29 mg/dL.

About the lipoprotein concentrations, you may recall from this graph I linked to in my first post on cholesterol, and in which was compiled all the available data found by its author, that included mortality rates and what is referred to as “total cholesterol” (but is in fact total lipoproteins), the ideal range for which is labelled “Colesterol total” in the above test results is 200-240 mg/dL, and the minimum all-cause mortality is found for concentrations of 220 mg/dL. That’s right where my numbers happen to be.

As for the glucose, well, you already know I try to keep it as low as possible, and by the way, I had no signs of hypoglycemia when my blood glucose was 60 mg/dL. In fact, I never do, even during three-day fasts, cycling to and from work, and doing resistance training at lunchtime. This demonstrates that the state of hypoglycemia can not be defined by a fixed threshold of glucose concentration below which we are considered to be in that state, but rather is based upon the individual’s metabolic function. This should be obvious since some people feel the consequence of hypoglycemia quite regularly and at glucose levels that would be exceptionally high for others, who on the contrary never feel them, simply because their metabolism has been trained to use fats for the body’s energy needs efficiently, and in fact, almost exclusively—to function in ketosis—as is my case. I plan to revisit this topic in greater detail in the future. But for now, let’s come back to the blood test results.

Firstly, we see that the sum of LDL and HDL compared to the “total cholesterol” is 216 vs. 224 (Dec 16) and 207 vs. 213 (Dec 22). This tells us that the VLDL (very low density lipoproteins) and CM (chylomicrons) together account for 8 mg/dL on Dec 16, and 6 mg/dL on Dec 22. They are, and we’ll not discuss these lipoproteins any further in this post.

Secondly, we note that the small difference in the very low concentrations of triglycerides (three fatty acids attached to a glycerol backbone), considered to be “normal” up to 150 mg/dL, mirrors the small difference in the lipoproteins that carry most of the triglycerides: the CM (90% triglycerides) and VLDL (62% triglycerides). Low triglyceride levels with low glucose and insulin levels equate to efficient metabolic use of fats.

And thirdly, we find that for 4 litres of blood, if we assume simple rounded figures of 100 mg/dL of LDL and 100 mg/dL of HDL, the total amount of cholesterol being carried around in the bloodstream is about 3000 mg: 40 dL*(50%*100 mg/dL + 25%*100 mg/dL). This is just 3 grams in the entire blood supply for a body weight of 58 kg! And an additional 1300 mg of cholesterol per day—almost half of the cholesterol in the bloodstream—from eating 6 eggs, and this for 6 consecutive days that supplied a total of 7800 mg of cholesterol, did not affect the lipoprotein concentration.

This leads us back to the hypothesis presented in the first paragraphs: the amount of cholesterol you eat should not really affect the amount of cholesterol in the blood. And although a quick experiment on a single person is far from being definitive proof of anything, this one clearly indicates, at least for me, that increasing intake of dietary cholesterol by an amount that is close to half of the total cholesterol circulating in the bloodstream, and doing this each day for 6 days in a row, does not raise lipoprotein concentrations (in this case, they went down slightly) when comparing the values measured at the same time in the late afternoon after a 24 hour fast once at the start of the week and 7 days later.

Furthermore, based on the sensible assumption that cholesterol synthesis by the liver is a response to the body’s needs, but also ability to manufacture it, if absorption of intestinal cholesterol is not nil but varies depending on the body’s needs, then supplying more dietary cholesterol may help ease the requirements on the liver for manufacturing the quantities needed. Therefore, this “help” to the liver can only be viewed as favourable considering the extreme importance of this organ for good health. It could also be that most or even all the additional dietary cholesterol was simply excreted in the stools. But in any case, it is absolutely certain that eating this huge amount of cholesterol every day did not affect lipoprotein concentrations in the blood after the period of fasting.

What I would like to do is to evaluate dietary cholesterol absorption on me, a 40-year old man in excellent health, by adopting an extreme diet of eating only eggs and water (this will remove the influence of other foods and nutrients and therefore reduce significantly the number of variables that can influence cholesterol synthesis and absorption), and take minimal blood samples at regular time intervals such as every hour or every couple of hours. By evaluating the changes in cholesterol transporters we would be able to estimate how much is absorbed because we know that lipids from the intestines are transported to the blood mostly by CM and VLDL, whereas HDL and LDL are mostly responsible for transport to and from the liver.

In any case, as we have seen here, but also as I mentioned in my opening sentences that we have known for a rather long time, dietary cholesterol does not influence blood cholesterol much. So please, when you hear someone say that we should avoid eating too much cholesterol because they have “high cholesterol”, you don’t need to say anything if you don’t want to, but remember at least this: cholesterol is so important and so good for us, that the liver and cells themselves will always do everything to supply the all the cholesterol that is needed, whatever that is at a particular time, and no matter how little or how much we get from our food. And maybe it is even the case that eating more cholesterol actually helps the liver and cells meet the body’s continuous demands throughout the day and night of this vital substance.

But what about cholesterol?

Cholesterol is nothing less than vital for life. It is vital for development. It is vital for growth. It is vital for reproduction. It is ultimately vital for both life to emerge, and for life to sustain itself. This is not a personal opinion—it is a fact.

Why? Because every membrane of every single cell in your body relies on cholesterol to give it structural integrity. Because every single nerve cell in your brain and every synapse through which nerve impulses are transmitted are mostly made of cholesterol. Because every sex hormone of every woman, man and child is constructed from cholesterol. Simply put: without cholesterol, animal life is impossible. There is not a single person in the world that can or would dispute this—it is simply so.

Does it even make sense to say that cholesterol is important for health, when our very existence and that of every animal life form depend on it? And how in the world can anyone in their right mind even formulate the notion that cholesterol is bad in any way, let alone the cause of a disease, and go as far as suggesting that we should avoid it as much as possible, as well as try to minimise and even suppress our body’s production of it as if it were some kind of poisonous substance whose purpose is to kill us? This is nothing less then absurd—totally and completely absurd.

I wish it were enough to say only this to immediately dispel all false, but firmly held beliefs we hold ‘on the dangers that cholesterol poses to our health’ because they have been given to us, forced upon us over the years, and now ingrained in our conscious mind. But unfortunately, although those few fundamental points about cholesterol mentioned above are more than enough to convince me that the entire anti-cholesterol campaign is at best a huge misunderstand, and at worse the biggest and most lucrative scam in human history, I fear that for most of us who have been thoroughly brainwashed by decades of misinformation campaigns, it will not suffice. So let’s look at this a little more closely, starting with the very basics, so that once you have read this article, you will be a lot better informed than you were, and in fact, almost surely better informed than your family doctor, as medical doctors tend to be pretty ignorant (I’m being lenient) of most things that relate to your health.

No such thing as ‘good’ or ‘bad’ cholesterol

Firstly, cholesterol comes in only one form: there is no such thing as good and bad cholesterol. Whether it is the cholesterol contained in the dark orange yolk of a fresh, free range, organic egg, whether it is the cholesterol synthesised by your liver through a complicated chain of steps that we still do not understand completely, or whether it is the cholesterol produced by the individual cells like the glial cells in the brain, or in any other tissue or organ other than the liver. And yes, this is yet something else that should make us clue in to the fact that cholesterol is vital for survival: unlike almost any other molecule, cholesterol is maybe the only one that probably every cell in every tissue can produce. Amazing, isn’t it? Why would most if not all cells be endowed with this ability, if cholesterol was not of vital importance to their survival as a living entity?

Anyway, there is only one form of cholesterol, and although I am repeating myself, it is very important to make the point as clear as possible: cholesterol is beyond good or bad—it is absolutely vital.

What are LDL and HDL?

Secondly, what is usually referred to as ‘good’ or ‘bad’ cholesterol (the result of a marketing scheme by the pharmaceutical industry), are in fact molecules called lipoproteins. They are proteins that transport lipids in the bloodstream (hence lipo-protein), and in particular cholesterol, to and from tissues in different parts of the body. Cholesterol is a waxy, fatty substance that is not soluble in water and therefore cannot flow in the bloodstream that is mostly water. For this reason it needs to be transported where it is needed by some other molecules: the lipoproteins. It is indeed most unfortunate that we hear about LDL as the ‘bad’, and HDL as the ‘good’ cholesterol. This is not only false, but completely absurd:

LDL stands for Low Density Lipoprotein, and HDL stands for High Density Lipoprotein. The reason why this erroneous association and misguided use of these terms came about—beyond that marketing scheme intent on making us believe that there is some bad agent in our blood that we need to get rid of by taking drugs—is based on the fact that one of the functions of LDL molecules is to transport cholesterol from the liver, where most of it is manufactured, to cells and tissues that need it for repair and regeneration. Since LDL helps to carry cholesterol out from the liver and into the bloodstream to tissues, in thinking that cholesterol in the blood should be minimised, then this is clearly a terrible thing. Hence LDL was dubbed the ‘bad’ cholesterol. Does this makes any sense? Not the slightest.

Why does the liver produce this complex cholesterol molecule, and why is there LDL to carry it from the liver to the organs and tissues of our body? Because cholesterol is necessary for the manufacture, maintenance and repair of the membrane of every single one of the 50 trillion cells in the body.

Naturally, for a molecule as important, as complex to synthesise, and therefore as precious as cholesterol, the organism has evolved a way to collect and reuse it: obviously, the three R’s, Reduce (the need for synthesis), Reuse and Recycle (everything you can). One of the roles of the HDL carrier molecules is to scavenge around for unneeded or surplus cholesterol and bring it back to the liver. Once more, in the mindset that cholesterol in the blood should be minimised—beyond the clever trick to introduce the essential protagonist to counter the bad LDL, for if there is a bad guy there naturally must be a good guy—since HDL helps to carry cholesterol from the bloodstream back to liver, this must be a good thing. Hence HDL was dubbed the ‘good’ cholesterol. Does this makes any sense? Not the slightest.

So we know that one of the the roles of LDL and HDL molecules—certainly the most obvious one—is to transport cholesterol from the liver to cells and tissues, and back to it for reuse and recycling or breakdown into other molecules. LDL and HDL work together as essential partners in the cholesterol transport system. But do these lipoproteins have other roles in the complex biochemistry of the human body? Indeed they do.

HDL and LDL: beyond cholesterol transport

As incredible as this may possibly sound to you if you are still brain-washed by the anti-cholesterol campaigns intended to convince you to eat more highly processed, tasteless, odourless, chemically altered and typically rancid vegetable oils, as well as to start taking ‘life-saving’ statin drugs, compiling all the data we have from studies that measured lipoprotein levels in the blood and death rates, we find that the lowest mortality from all diseases occurs in people with total lipoprotein levels between 200 and 240, centred on 220 mg/dl. These are age-corrected data, so as we age levels should gradually rise. But that’s not the only thing we find from looking at this graph of compiled data: there is an inverse relationship between lipoprotein levels and mortality such that the lower the lipoprotein levels are, the higher the death rate! and this for all diseases—infectious, parasitic and cardiovascular. To those who know what HDL and LDL molecules do, this is not surprising at all. It is, in fact, perfectly sensible.

As much as some may believe that the main role of LDL and HDL molecules is to carry cholesterol to and from tissues for cellular maintenance and repair, some would argue that their main role is not simple transport of cholesterol, but in fact, it is to protect the organism from bacterial and viral pathogens. It is firmly established that lipoproteins bind to endotoxins to inactivate them and protect against their toxic effects that include arterial wall inflammation. Endotoxins are part of the outer membrane of the cell wall of Gram-negative bacteria such as Escherichia coli, Salmonella, Shigella, Pseudomonas, Neisseria, Haemophilus influenzae, Bordetella pertussis and Vibrio cholerae, all of which can cause severe, well known diseases. In addition, lipoproteins also protect against viruses like hepatitis B, and consequently in this case, against cancer and other diseases of the liver as reported here. There are many scientific publications on this and related topics, but most are quite complicated. (If you are interested in this kind of thing, you can look at this article, and browse through the long list of references. For those interested in bacteriology, I found a great free online textbook by Kenneth Todar of the University of Wisconsin.)

The essential point to remember, however, is that the lipoproteins LDL and HDL play a very important role in our immune system by neutralising harmful toxins released from the activity of pathogenic bacteria and viruses, thus protecting us from infectious diseases and the related chronic inflammation. This is why people with higher levels of lipoproteins LDL and HDL live longer and healthier lives.

Cholesterol and the brain

Although all cell membranes rely on cholesterol for structural integrity, neurons or brain cells are highly enriched in cholesterol that makes up more than 20% of their dry weight. The importance of this enrichment can be appreciated when we consider that our brain accounts for about 2% of our body weight, but it contains about 25% of the cholesterol in the body. This means that the concentration of cholesterol in the brain is 12.5 times higher than the average bodily concentration. Isn’t this enough to convince you of the extreme importance of cholesterol for proper brain functions?

As elsewhere in the body, cholesterol is found in the cell membrane—for brain cells this is the myelin sheaths that insulate them. But in addition, and maybe more importantly, cholesterol is the main constituent of the synapses through which nerve impulses are transmitted from one neurons to another. And contrary to common wisdom that lipoproteins cannot cross the blood-brain barrier, and therefore brain cholesterol must be synthesised in the brain, it has been shown that if something prevents brain cells from synthesising the precious cholesterol, then they use whatever they can get from the lipoproteins circulating in the blood.

With all of this in mind, is it surprising that when cholesterol synthesis is partially or completely de-activated using statin drugs, some of the most common symptoms seen are memory loss, dizziness, mental fog, slowing reflexes, etc., all of which are obviously related to brain function? Is it surprising that Alzheimer’s patients tend to have lower cholesterol levels both in the blood and in the brain? Well, no. It’s not.

For me, there is no need to go further: I want to have a brain that is provided with all the fat and cholesterol is needs to function to best of its abilities for as long as I am alive. If you want to learn more about the incredibly detrimental effects of cholesterol-reducing drugs, you should read any or all of Dr Duane Graveline‘s books: Lipitor: Thief of Memory, Statin Drugs Side Effect and the Misguided War on Cholesterol, and Statin Damage Crisis. I also stumbled upon this article in the Wall Street Journal (out of all places), that describes how important cholesterol is for the brain, and hence, how damaging cholesterol-lowering drugs can be.

Cholesterol and hormones

What more needs to be said to emphasise the importance of cholesterol for healthy hormonal function than that all steroid hormones are made from it. Steroid hormones, as the names suggests, are steroids that act as hormones. Hormones are messenger molecules that tell cells what to do and when to do it. To carry out their function—to pass on their message—they must reach the nucleus of the cell. But to reach the well protected nucleus and bind to specific receptors in it, hormones must pass through the fatty cellular membrane. For this reason, hormones are made of fat: they are lipids. Since lipids are not water soluble, as is the case of cholesterol, hormones rely on specialised proteins to transport them in the bloodstream throughout the body.

There are 5 groups of steroid hormones: glucocorticoids, mineralocorticoids, androgens, oestrogens and progestogens, as well the closely related hormones that we refer to as Vitamin D. Each one of these is a family of hormones responsible for regulating the metabolism related to a specific group of substances.

Glucocorticoids are steroids produced in the adrenal gland, and responsible for glucose metabolism. Cortisol is maybe the most important of glucocorticoids as it is absolutely essential for life, regulating or supporting a variety of important cardiovascular, metabolic, immunologic, and homeostatic functions.

Mineralocorticoids are responsible for the regulation minerals, the most important of which are sodium and potassium. The primary such hormone is aldosterone that acts on the kidneys to regulate reabsorption of sodium and water from the blood, as well as secretion of potassium. These two minerals are required in the well known sodium-potassium pump that continuously, for every single cell, work to ensure that the concentration of sodium stays higher outside, while the concentration of potassium stays higher inside the cell. This is crucial for its proper function. In addition, it is through the sodium-potassium pump that glucose is transported from the bloodstream into the cell.

Androgens, oestrogens and progestogens are sex hormones. It is needless to say that they must all be in good balance for proper development and physiological function, as well as psychological health in both males and females. It is important to emphasise that although we typically associate the main androgen, testosterone, with men, this hormone plays a very important role in muscle development and inhibition of fat deposition, both of which are clearly of great value to women as well. There are also several psychological factors regulated by the concentration and relative balance of male and female sex hormones such as assertiveness, motivation, self-confidence, on the one hand, and calm, caring and compassion, on the other. Interestingly, the most important oestrogens are derived from androgens through the action of enzymes. Therefore a deficiency in androgens will naturally lead to a corresponding deficiency in oestrogenic hormones. As is well known, oestrogens regulate all aspects of the reproductive system in women. Phychologically, low oestrogen levels are associated with depression and hyper-sensitivity in females, and insecurity and obsessive compulsive type of behaviours in males. Progestogens are most important in their role in maintaining pregnancy (pro-gestation) and are therefore most important for women. They are, however, rather special hormones because progestogens are precursors to all other steroids. All steroid producing tissues such as the adrenals, ovaries and testes, must therefore be able to produce progestogens.

To learn more about hormones, their importance, their effects and how to bring them into balance through diet, I recommend the Hormone Solution (english) or Le regime hormone (french) by Thierry Hertoghe, MD.

Too much cholesterol?

There is no such thing as too much cholesterol. The body produces exactly what it needs depending on the conditions, and as such, the amount in circulation is a consequence of other factors. Lipoprotein levels, reflecting the amount of cholesterol in circulation, are a function of genetics and of the state of the body. Genetic tendencies are what they are. The state of the body, as far as cholesterol is concerned, means primarily the condition of the tissues. And the condition of the tissues reflects the amount of damage they sustain in relation to the amount of repair that takes place: in other words, the rate of ageing. Since cholesterol gives cell membranes strength and integrity, it is needed to repair and rebuild cells: the more cellular reproduction as in growing children, the more cholesterol is needed; the more damage to cells, the more cholesterol is needed. The damage sustained by tissues is mostly from glycation, free-radicals and chronic inflammation, all of which are intimately related because blood sugar triggers both free-radical production and inflammatory processes, but inflammation also arises from the action of toxins and infectious agents like viruses and bacteria.

Refined and starchy carbohydates and chemically unstable polyunsaturated vegetable oils both directly cause glycation, free-radical damage and chronic inflammation. They should be eliminated from the diet—from everyone’s diet. Doing this is the only truly effective way to minimise tissue damage and ageing, maximise repairing and rebuilding, and as a consequence, minimise risks of degenerative diseases. It will also normalise cholesterol synthesis and usage, and bring lipoprotein levels into their optimal range, completely naturally because, once more: cholesterol needs and lipoprotein concentrations are always a consequence of other factors. They should never be tampered with and manipulated, because intervention of this kind can only and will inevitably lead to problems.

Further readings on cholesterol

If you want to learn more about cholesterol, I recommend to first read the short and light-hearted book by Malcolm Kendrick, MD, entitled The Great Cholesterol Con subtitled The truth about what really causes heart disease and how to avoid it. Beyond showing that cholesterol and saturated fat are not in any way causes of heart disease, this author presents convincing evidence that, in fact, it is psychological stress that is surely one of the main causes of heart disease.

After reading this, if you want to read a complete analysis of all the studies related in some way to heart disease that is also very accessible to a general readership, you should read the much longer but very thorough book by Anthony Colpo, revealingly also entitled The Great Cholesterol Con, but subtitled Why everything you’ve been told about cholesterol, diet and heart disease is wrong! Beyond the thorough review of the literature and clearly explained conclusions, the author looks at all major factors demonstrably linked to the causes of heart disease.

For a shorter but more technical review and close look at the cholesterol and saturated fat related scientific literature, you should read Fat and Cholesterol are Good for You by Uffe Ravnskov, MD, PhD. Beyond also showing that cholesterol and saturated fats are not in any way the cause of heart disease, this author makes a case for infectious disease as the root cause of arterial inflammation, buildup of plaque, and eventually heart disease. His line of arguments is also quite convincing.

The excellent book by Gary Taubes, Good Calories, Bad Calories, is a thorough review of 150 years of diet-related medical history, especially in what relates to obesity and diabetes, but also heart disease. The writing style is that of a good science writer, as is the author. There is a full analysis of the lipid hypothesis of heart disease, followed by a full analysis of the carbohydrate hypothesis of heart disease. And although there more of an emphasis on the detrimental effects of eating carbohydrates, there is naturally considerable discussion of all points that relate to cholesterol and saturated fats.

Lastly, this is an excellent web site on cholesterol, full of interesting and well-researched articles: http://www.cholesterol-and-health.com and an excellent interview here.

Why Oh Why?

Why is it then, that most of us believe cholesterol is bad? Why do most of us believe we should, not sometimes, but always avoid foods that contain cholesterol or saturated fats that seem to help the body manufacture cholesterol? Because we have been told that it is. Nothing more complicated than that. We have been told this absurd, unfounded and outright dangerous story that is in fact a lie, and we believe it. Why have we been made to believe this? The answer is two-fold: bad science, bad scientists and egos, on the one hand, and on the other, money: lots and lots of money. In fact, more than 29 000 000 000 dollars worth of money.

For the ‘bad science’ part I will only say this: It is true that the accumulation of plaque can lead to heart disease. It is also true that plaque is very cholesterol-rich. However, the reason why plaque is formed is because the arterial tissue is damaged and needs to be repaired. The cholesterol-rich plaque is like a scab whose role is to allow the damaged tissue to heal. And just as a scab, once the tissue is healed, it ‘falls off’ and is brought back to the liver for recycling. The cholesterol is part of the healing agent: the cure, so to speak. The damage to the tissue comes from other things, wether it is inflammatory endotoxins released from pathogenic bacteria, cigarette smoking-related chemicals, or maybe most importantly glucose sticking haphazardly to proteins, damaging the arterial walls and forming advanced glycation end-products or AGEs for short, cholesterol is the bandage meant to help the tissue heal—not the cause of the problem.

For the ‘money’ part, I will have to write a few more paragraphs. In the 1950s the vegetable oil industry found a way to hydrogenate inexpensive liquid vegetable oil made from soy and corn into firm shortening. This gave them the perfect means to compete for, and indeed takeover a large share of the market that had traditionally been held by the dairy (butter), meat (lard) or coconut and palm oil producers to which they did not have a way to tap into. With hydrogenation, they were able to produce butter substitutes (margarines), as well as lard and tropical oil substitutes (shortenings), and offer them at a mere fraction of the price of the original products with the potential of making enormous profits with their sale on a national and in some cases international scales. Therefore, unfortunately, but not so surprisingly, many of the large scale trials in the field of dietary science carried out in the 60s, 70s and 80s were funded by the vegetable oil industry.

The money that the vegetable oil industry must have made and still makes the world over, however, is probably nothing in comparison to the billions raked in every year by a handful of pharmaceutical manufacturers that produce and sell the cholesterol-lowering statins. In 2003, the best selling prescription drug in the world was Pfizer’s Lipitor with sales of 9.2 billion dollars (that’s more than 25 million per day). And in 2009 statin sales generated a staggering 25 billion dollars in revenues, and this figure has been rising since the very beginning of statin sales in the 1990s.

But doctors don’t have anything to gain from this, do they? Well, no, not really. But for one thing, doctors are usually not research scientist, and thus they are generally not only very poorly informed about health-related matters, but also unable or simply uninterested in reading books written by specialists on various health topics, let alone in reading the often technical and complicated scientific literature.

To make matters worse, 75% of clinical trials are funded by pharmaceutical companies, and therefore about 75% of all published medical papers also derive from pharmaceutical funding. Finally, the vast majority of conferences and workshops that doctors are invited to attend, all expenses paid of course, to keep them informed of the latest and greatest developments in medical science are also usually fully funded by the pharmaceutical. It goes without saying that what is presented at these conferences naturally serves their interests that are obviously purely financial.

I think you get the picture, but if you want to read more about this, all of the independent researchers and authors mentioned above: Malcolm Kendrick (The Great Cholesterol Con) and Uffe Ravnskov (Cholesterol and Fat are Good for You) who both practice medicine and have thus experienced this first hand, as well as Gary Taubes (Good Calories, Bad Calories) and Anthony Colpo (a different The Great Cholesterol Con) have some things to say about corporate involvement in clinical trials. Obviously, you can also search the internet to your heart’s content.

Final words

I certainly hope I have succeeded in convincing you that cholesterol is not in the least harmful, and that it is, in fact, absolutely vital to your health: vital for your hormonal system, vital for your immune system, vital for your brain, and vital for every cell in your body.

I also hope I have convinced you that it is not only the case that everything you have been told that incriminates either cholesterol or LDL as causing heart disease or any other ailment is wrong, but that you should actually do whatever you can to maintain optimal lipoprotein levels around 220 mg/dl, and supply your body with ample amounts of health-promoting fats, increasing your intake of coconut oil (the most healthful of all fats), as well as fat-soluble vitamins and cholesterol from organic eggs from free range, grass-and-insect eating hens (preferably raw in smoothies in order not to damage any of the fats or proteins), butter and fatty cheeses (highly preferably made from unpasteurized milk to maximise digestibility), and grass-fed meats if you are not vegetarian or vegan. But here, and as always, the most important and fundamental health-promoting thing to do is to eliminate insulin-stimulating carbohydrates.